Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity
نویسندگان
چکیده
A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g-1 exhibited a considerably high OSC of 427 μmol-O g-1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.
منابع مشابه
Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Micro- wave-Assisted Combustion Method
By adopting a simple cost effective microwave-assisted synthesis methodology, nanosized ceria-zirconia solid solution (MW) has been prepared. For comparison purpose, ceria-zirconia solid solution with the same composition was also synthesized by a coprecipitation method (CP) and calcined at 773 K. Both the samples were examined by different characterization techniques namely, X-ray diffraction,...
متن کاملControlled synthesis and assembly of ceria-based nanomaterials.
The nanoscience and nanotechniques have brought with new chance for new applications of some traditional materials, for instance, ceria-based materials, which are of great interest due to their wide applications, in particular, as redox or oxygen storage promoters in the three-way catalysts, catalysts for H(2) production from fuels, and solid state conductors for fuel cells. We highlight here c...
متن کاملIn Situ Nanoscale Characterization of Redox Processes in Ceria Zirconia
The ability of cerium oxides to reversibly form +3 and +4 valence oxides (CeO2 and Ce2O3) can lead to excellent oxygen storage capacity (OSC). Oxygen vacancy ordering may inhibit the reversible nature of the redox process [1]. It is well-known that doping with zirconia not only improves the life of the redox cycles but also lowers the reduction temperature [2]. Therefore nanoscale ceria-zirconi...
متن کاملMetal-support interaction and redox behavior of Pt(1 wt %)/Ce0.6Zr0.4O2.
The catalyst Pt(1 wt %)/Ce(0.6)Zr(0.4)O(2) is studied by CO-temperature programmed reduction (CO-TPR), isothermal oxygen storage complete capacity (OSCC), X-ray absorption spectroscopy (XAS) at the Pt L(III) edge, and in situ X-ray diffraction (in situ XRD), with the aim of elucidating the role of supported metal in CO oxidation by ceria-based three-way catalysts (TWC). The redox behavior of Pt...
متن کاملStatistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions.
The thermodynamic redox properties of ceria and ceria zirconia solid solutions are analysed with a new methodology for modelling such systems based on the statistical mechanics of lattice configurations. Experimental thermogravimetric equilibrium data obtained for small non-stoichiometry measurements are combined with literature data to cover a large range of non-stoichiometry (CeO2-δ, δ = 0.00...
متن کامل